Advanced Statistical Analysis using IBM SPSS Statistics Eğitimi

Ön Kayıt ve Fiyat Bilgi Formu



Tarih ve lokasyonlar


Bu eğitimi özel sınıf olarak kendi kurumunuzda talep edebilirsiniz.
Lütfen bizimle iletişime geçin:


info@bilginc.com

+90 212 282 7700

Talep Formu
Eğitim Tipi ve Süresi

2 Days ILT    

This advanced course is for: Anyone who has worked with SPSS Statistics and wants to become better versed in the more advanced statistical capabilities. Anyone who has a solid understanding of statistics and wants to expand their knowledge of appropriate statistical procedures and how to set them up using SPSS Statistics. Analysts and Modelers


Advanced Statistical Analysis Using IBM SPSS Statistics is a three day instructor-led classroom course that provides an application-oriented introduction to the advanced statistical methods available in IBM® SPSS® Statistics for data analysts and researchers. You will review a variety of advanced statistical techniques and discuss situations in which each technique would be used, the assumptions made by each method, how to set up the analysis, as well as how to interpret the results. This includes a broad range of techniques for predicting both continuous and categorical outcomes, as well as methods to cluster cases, create statistical groupings of variables, and find similar cases using a large set of variables. You will gain an understanding of when and why to use these various techniques as well as how to apply them with confidence and interpret your output.


Factor Analysis Explain the basic theory of factor analysis and the steps in factor analysis Explain the assumptions and requirements of factor analysis Specify a factor analysis and interpret the output K-Means Cluster Analysis Explain the basic theory of cluster analysis and the steps in doing a cluster analysis Explain the approach of K-Means cluster analysis Specify a K-Means cluster analysis and interpret the output TwoStep Cluster Analysis Explain the basic approach of TwoStep cluster analysis Specify a TwoStep cluster analysis Use the Model Viewer to study and interpret the output Binary Logistic Regression Explain the basic theory and assumptions of logistic regression Specify a logistic regression analysis Interpret model fit, logistic regression coefficients and model accuracy Multinomial Logistic Regression Explain the basic theory of multinomial logistic regression Specify a multinomial logistic regression analysis Interpret model fit, logistic regression coefficients and model accuracy Discriminant Analysis Explain the basic theory of discriminant analysis and how cases are classified Specify a two-group discriminant analysis and interpret the resulting output Complete additional analysis and validation of the discriminant model Nearest Neighbor Analysis Explain the basic approach of nearest neighbor analysis Explain the meaning of k in the analysis and how cases are classified Specify a nearest neighbor analysis and interpret the resulting output in the Model Viewer Kaplan-Meier Analysis Explain the general principles of survival analysis Specify a Kaplan-Meier analysis and interpret the resulting tabular and graphical output Specify a Kaplan-Meier analysis with a strata variable, and with pairwise comparisons Cox Regression Explain the general principles of Cox regression Specify a Cox regression analysis and interpret the resulting tabular and graphical output Test the assumption of proportional hazards Specify a Cox regression with time-varying covariate for variables that don't meet the assumption of proportionality Generalized Linear Models Explain the use of the exponential family of distributions and a link function and how these differential a generalized linear model from a general linear model Specify a Generalized Linear Model analysis and interpret the resulting output Check model assumptions and predictions Linear Mixed Models Explain the general principles of a linear mixed model approach to data analysis Specify a Linear Mixed Model analysis and interpret the resulting output, building successive models of greater complexity


Please refer to course overview.




Eğitim içeriğini PDF olarak indir

Eğitim Sağlayıcı ve Kategori

IBM  » Business Analysis Eğitimler
Business Analysis  » Business Analysis Eğitimler