Time Series Analysis and Forecasting with IBM SPSS Forecasting Eğitimi

Ön Kayıt ve Fiyat Bilgi Formu




Tarih ve lokasyonlar


Bu eğitimi özel sınıf olarak kendi kurumunuzda talep edebilirsiniz.
Lütfen bizimle iletişime geçin:


info@bilginc.com

+90 212 282 7700

Talep Formu

Time Series Analysis and Forecasting with IBM SPSS Forecasting (0G096G )

IBM Course Code: 0G096G

This three-day course gets you up and running with a set of procedures for analyzing time series data. Learn how to forecast using a variety of models which take into account different combinations of trend, seasonality and prediction variables. The new Expert Modeler features in SPSS Trends 14.0 will be covered in this course. Generate predicted values along with standard errors, confidence intervals and residuals. This course will emphasize the graphical display of your results so you can visualize your forecasting models.

Access Your Class Recording for Six Months

Enjoy six months of access to a fully indexed and searchable recording of your class when you choose our Virtual Classroom Live learning experience.

Who Needs to Attend

This advanced course is for SPSS users who are interested in getting up to speed quickly and efficiently using the SPSS forecasting capabilities. Those who want to know the full capabilities of the Trends module and its Expert Modeler.

Prerequisites

On the job experience with SPSS for Windows or completion of the Basics and/or Intermediate SPSS for Windows courses. No previous forecasting experience required. For users of SPSS for Windows Base System, SPSS Trends. It would be helpful to have a basic understanding of regression analysis.

Follow-On Courses

There are no follow-ons for this course.

Course Outline

  • The basics of forecasting
  • Smoothing time series data
  • Outliers and error in time series data
  • Automatic forecasting with the Expert Modeler
  • Assessing model performance
  • Fitting curves to time series data
  • Regression with time series data
  • Exponential smoothing models
  • ARIMA models
  • Applying a model to new data
  • Seasonal decomposition
  • Modeling seasonality
  • Intervention analysis
  • Transfer functions in ARIMA
  • Automatic forecasting of several time series



Eğitim içeriğini PDF olarak indir

Diğer IBM, Business Analysis Eğitimleri